请我喝杯咖啡☕
*我的帖子解释了 mnist。
mnist() 可以使用 mnist 数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
- 第二个参数是 train(optional-default:false-type:Float)。 *如果为 true,则使用训练数据(60,000 个样本),如果为 false,则使用测试数据(60,000 个样本)。
- 第三个参数是transform(optional-default:none-type:callable)。
- 第四个参数是 target_transform(optional-default:none-type:callable)。
- 第五个参数是 download(optional-default:false-type:bool): *备注:
- 如果为 true,则从互联网下载数据集并解压(解压)到根目录。
- 如果为 true 并且数据集已下载,则将其提取。
- 如果为 true 并且数据集已下载并提取,则不会发生任何事情。
- 如果数据集已经下载并提取,则应该为 false,因为它速度更快。
- 您可以从此处手动下载并提取数据集,例如数据/mnist/原始/。
from torchvision.datasets import mnist train_data = mnist( root="data" ) train_data = mnist( root="data", train=true, transform=none, target_transform=none, download=false ) train_data # dataset mnist # number of datapoints: 60000 # root location: data # split: train train_data.root # 'data' train_data.train # true print(train_data.transform) # none print(train_data.target_transform) # none train_data.download # <bound method mnist.download of dataset mnist # number of datapoints: 60000 # root location: data # split: train> train_data[0] # (<pil.image.image image mode=l size=28x28>, 5) train_data[1] # (<pil.image.image image mode=l size=28x28>, 0) train_data[2] # (<pil.image.image image mode=l size=28x28>, 4) train_data[3] # (<pil.image.image image mode=l size=28x28>, 1) train_data.classes # ['0 - zero', # '1 - one', # '2 - two', # '3 - three', # '4 - four', # '5 - five', # '6 - six', # '7 - seven', # '8 - eight', # '9 - nine']
from torchvision.datasets import MNIST train_data = MNIST( root="data" ) test_data = MNIST( root="data", train=False ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(10, 2)) col = 4 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)