最近,我正在研究一个计算泊松分布的函数的多线程实现(amath_pdist)。目标是将工作负载分配到多个线程以提高性能,特别是对于大型阵列。然而,我注意到随着数组大小的增加,速度明显减慢,而不是达到预期的加速。
经过一番调查,我发现了罪魁祸首:虚假分享。在这篇文章中,我将解释什么是错误共享,展示导致问题的原始代码,并分享导致性能大幅提升的修复方法。
问题:多线程代码中的错误共享
错误共享当多个线程在共享数组的不同部分工作时发生,但它们的数据驻留在同一个缓存行中。高速缓存行是内存和 cpu 高速缓存之间传输的最小数据单元(通常为 64 字节)。如果一个线程写入缓存行的一部分,就会使其他线程的该行无效,即使它们正在处理逻辑上独立的数据。由于重复重新加载缓存行,这种不必要的失效会导致性能显着下降。
这是我的原始代码的简化版本:
void *calculate_pdist_segment(void *data) { struct pdist_segment *segment = (struct pdist_segment *)data; size_t interval_a = segment->interval_a, interval_b = segment->interval_b; double lambda = segment->lambda; int *d = segment->data; for (size_t i = interval_a; i < interval_b; i++) { segment->pdist[i] = pow(lambda, d[i]) * exp(-lambda) / tgamma(d[i] + 1); } return null; } double *amath_pdist(int *data, double lambda, size_t n_elements, size_t n_threads) { double *pdist = malloc(sizeof(double) * n_elements); pthread_t threads[n_threads]; struct pdist_segment segments[n_threads]; size_t step = n_elements / n_threads; for (size_t i = 0; i < n_threads; i++) { segments[i].data = data; segments[i].lambda = lambda; segments[i].pdist = pdist; segments[i].interval_a = step * i; segments[i].interval_b = (i == n_threads - 1) ? n_elements : (step * (i + 1)); pthread_create(&threads[i], null, calculate_pdist_segment, &segments[i]); } for (size_t i = 0; i < n_threads; i++) { pthread_join(threads[i], null); } return pdist; }
问题发生在哪里
上面的代码中:
- 数组 pdist 在所有线程之间共享。
- 每个线程写入特定范围的索引(interval_a 到interval_b)。
- 在段边界,相邻索引可能驻留在同一缓存行中。例如,如果 pdist[249999] 和 pdist[250000] 共享一个缓存行,则线程 1(处理 pdist[249999])和线程 2(处理 pdist[250000])会使彼此的缓存行无效。
这个问题对于较大的数组来说扩展性很差。虽然边界问题看起来很小,但迭代的绝对数量放大了缓存失效的成本,导致数秒的不必要的开销。
解决方案:将内存与缓存行边界对齐
为了解决该问题,我使用 posix_memalign 来确保 pdist 数组与 64 字节边界 对齐。这保证了线程在完全独立的缓存行上运行,消除了错误共享。
这是更新后的代码:
double *amath_pdist(int *data, double lambda, size_t n_elements, size_t n_threads) { double *pdist; if (posix_memalign((void **)&pdist, 64, sizeof(double) * n_elements) != 0) { perror("Failed to allocate aligned memory"); return NULL; } pthread_t threads[n_threads]; struct pdist_segment segments[n_threads]; size_t step = n_elements / n_threads; for (size_t i = 0; i < n_threads; i++) { segments[i].data = data; segments[i].lambda = lambda; segments[i].pdist = pdist; segments[i].interval_a = step * i; segments[i].interval_b = (i == n_threads - 1) ? n_elements : (step * (i + 1)); pthread_create(&threads[i], NULL, calculate_pdist_segment, &segments[i]); } for (size_t i = 0; i < n_threads; i++) { pthread_join(threads[i], NULL); } return pdist; }
为什么这有效?
-
对齐内存:
- 使用 posix_memalign,数组从缓存行边界开始。
- 每个线程分配的范围与缓存行整齐对齐,防止重叠。
-
无缓存线共享:
- 线程在不同的缓存行上运行,消除了错误共享导致的失效。
-
提高缓存效率:
- 顺序内存访问模式与 cpu 预取器很好地配合,进一步提高性能。
结果和要点
应用修复后,amath_pdist 函数的运行时间显着下降。对于我正在测试的数据集,挂钟时间从 10.92 秒下降到 0.06 秒。
主要经验教训:
- 错误共享是多线程应用程序中一个微妙但关键的问题。即使段边界处的微小重叠也会降低性能。
- 内存对齐使用posix_memalign是解决错误共享的简单有效的方法。将内存与缓存行边界对齐可确保线程独立运行。
- 在处理大型数组或并行处理时,始终分析代码是否存在与缓存相关的问题。 perf 或 valgrind 等工具可以帮助查明瓶颈。
感谢您的阅读!
对于任何对代码感兴趣的人,您可以在这里找到它