这篇文章主要简单分析了linux下systemlinux,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
简单分析了linux下system函数的相关内容,具体内容如下
int libc_system (const char *line) { if (line == NULL) /* Check that we have a command processor available. It might not be available after a chroot(), for example. */ return do_system ("exit 0") == 0; return do_system (line); } weak_alias (libc_system, system)
代码位于glibc/sysdeps/posix/system.c,这里system是libc_system的弱别名,而libc_system是do_system的前端函数,进行了参数的检查,接下来看do_system函数。
static int do_system (const char *line) { int status, save; pid_t pid; struct sigaction sa; #ifndef _LIBC_REENTRANT struct sigaction intr, quit; #endif sigset_t omask; sa.sa_handler = SIG_IGN; sa.sa_flags = 0; sigemptyset (&sa.sa_mask); DO_LOCK (); if (ADD_REF () == 0) { if (sigaction (SIGINT, &sa, &intr) <p>首先函数设置了一些信号处理程序,来处理SIGINT和SIGQUIT信号,此处我们不过多关心,关键代码段在这里</p><pre class="brush:bash;">#ifdef FORK pid = FORK (); #else pid = fork (); #endif if (pid == (pid_t) 0) { /* Child side. */ const char *new_argv[4]; new_argv[0] = SHELL_NAME; new_argv[1] = "-c"; new_argv[2] = line; new_argv[3] = NULL; /* Restore the signals. */ (void) sigaction (SIGINT, &intr, (struct sigaction *) NULL); (void) sigaction (SIGQUIT, &quit, (struct sigaction *) NULL); (void) sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL); INIT_LOCK (); /* Exec the shell. */ (void) execve (SHELL_PATH, (char *const *) new_argv, environ); _exit (127); } else if (pid <p>首先通过前端函数调用系统调用fork产生一个子进程,其中fork有两个返回值,对父进程返回子进程的pid,对子进程返回0。所以子进程执行6-24行代码,父进程执行30-35行代码。</p><p>子进程的逻辑非常清晰,调用execve执行SHELL_PATH指定的程序,参数通过new_argv传递,环境<a href="http://www.php.cn/wiki/1497.html" target="_blank">linux</a>为全局变量environ。</p><p>其中SHELL_PATH和SHELL_NAME定义如下</p><pre class="brush:bash;">#define SHELL_PATH "/bin/sh" /* Path of the shell. */ #define SHELL_NAME "sh" /* Name to give it. */
其实就是生成一个子进程调用/bin/sh -c “命令”来执行向system传入的命令。
下面其实是我研究system函数的原因与重点:
在CTF的pwn题中,通过栈溢出调用system函数有时会失败,听师傅们说是环境变量被覆盖,但是一直都是懵懂,今天深入学习了一下,总算搞明白了。
在这里system函数需要的环境变量储存在全局变量environ中,那么这个变量的内容是什么呢。
environ是在glibc/csu/libc-start.c中定义的,我们来看几个关键语句。
# define LIBC_START_MAIN libc_start_main
libc_start_main是_start调用的函数,这涉及到程序开始时的一些初始化工作,对这些名词不了解的话可以看一下这篇文章。接下来看LIBC_START_MAIN函数。
STATIC int LIBC_START_MAIN (int (*main) (int, char **, char ** MAIN_AUXVEC_DECL), int argc, char **argv, #ifdef LIBC_START_MAIN_AUXVEC_ARG ElfW(auxv_t) *auxvec, #endif typeof (main) init, void (*fini) (void), void (*rtld_fini) (void), void *stack_end) { /* Result of the 'main' function. */ int result; libc_multiple_libcs = &_dl_starting_up && !_dl_starting_up; #ifndef SHARED char **ev = &argv[argc + 1]; environ = ev; /* Store the lowest stack address. This is done in ld.so if this is the code for the DSO. */ libc_stack_end = stack_end; ...... /* Nothing fancy, just call the function. */ result = main (argc, argv, environ MAIN_AUXVEC_PARAM); #endif exit (result); }
我们可以看到,在没有define SHARED的情况下,在第19行定义了environ的值。启动程序调用LIBC_START_MAIN之前,会先将环境变量和argv中的linux保存起来(其实是保存到栈上),然后依次将环境变量中各项字符串的地址,argv中各项字符串的地址和argc入栈,所以环境变量linux一定位于argv数组的正后方,以一个空地址间隔。所以第17行的&argv[argc + 1]语句就是取环境变量数组在栈上的首地址,保存到ev中,最终保存到environ中。第203行调用main函数,会将environ的值入栈,这个被栈溢出覆盖掉没什么问题,只要保证environ中的地址处不被覆盖即可。
所以,当栈溢出的长度过大,溢出的内容覆盖了environ中地址中的重要内容时,调用system函数就会失败。具体环境变量距离溢出地址有多远,可以通过在_start中下断查看。