Hello! 欢迎来到小浪资源网!



LangGraph 状态机:管理生产中的复杂代理任务流


LangGraph 状态机:管理生产中的复杂代理任务流

什么是 langgraph?

langgraph是专为llm应用程序设计的工作流编排框架。其核心原则是:

  • 将复杂任务分解为状态和转换
  • 管理状态转换逻辑
  • 任务执行过程中各种异常的处理

想想购物:浏览→添加到购物车→结账→付款。 langgraph 帮助我们有效地管理此类工作流程。

核心概念

1. 国家

状态就像任务执行中的检查点:

from typing import typeddict, list  class shoppingstate(typeddict):     # current state     current_step: str     # cart items     cart_items: list[str]     # total amount     total_amount: float     # user input     user_input: str  class shoppinggraph(stategraph):     def __init__(self):         super().__init__()          # define states         self.add_node("browse", self.browse_products)         self.add_node("add_to_cart", self.add_to_cart)         self.add_node("checkout", self.checkout)         self.add_node("payment", self.payment) 

2. 状态转换

状态转换定义任务流的“路线图”:

class shoppingcontroller:     def define_transitions(self):         # add transition rules         self.graph.add_edge("browse", "add_to_cart")         self.graph.add_edge("add_to_cart", "browse")         self.graph.add_edge("add_to_cart", "checkout")         self.graph.add_edge("checkout", "payment")      def should_move_to_cart(self, state: shoppingstate) -> bool:         """determine if we should transition to cart state"""         return "add to cart" in state["user_input"].lower() 

3. 状态持久化

为了保证系统的可靠性,我们需要持久化状态信息:

class statemanager:     def __init__(self):         self.redis_client = redis.redis()      def save_state(self, session_id: str, state: dict):         """save state to redis"""         self.redis_client.set(             f"shopping_state:{session_id}",             json.dumps(state),             ex=3600  # 1 hour expiration         )      def load_state(self, session_id: str) -> dict:         """load state from redis"""         state_data = self.redis_client.get(f"shopping_state:{session_id}")         return json.loads(state_data) if state_data else none 

4. 错误恢复机制

任何步骤都可能失败,我们需要优雅地处理这些情况:

class errorhandler:     def __init__(self):         self.max_retries = 3      async def with_retry(self, func, state: dict):         """function execution with retry mechanism"""         retries = 0         while retries < self.max_retries:             try:                 return await func(state)             except exception as e:                 retries += 1                 if retries == self.max_retries:                     return self.handle_final_error(e, state)                 await self.handle_retry(e, state, retries)      def handle_final_error(self, error, state: dict):         """handle final error"""         # save error state         state["error"] = str(error)         # rollback to last stable state         return self.rollback_to_last_stable_state(state) 

现实示例:智能客户服务系统

让我们看一个实际的例子——智能客服系统:

from langgraph.graph import stategraph, state  class customerservicestate(typeddict):     conversation_history: list[str]     current_intent: str     user_info: dict     resolved: bool  class customerservicegraph(stategraph):     def __init__(self):         super().__init__()          # initialize states         self.add_node("greeting", self.greet_customer)         self.add_node("understand_intent", self.analyze_intent)         self.add_node("handle_query", self.process_query)         self.add_node("confirm_resolution", self.check_resolution)      async def greet_customer(self, state: state):         """greet customer"""         response = await self.llm.generate(             prompt=f"""             conversation history: {state['conversation_history']}             task: generate appropriate greeting             requirements:             1. maintain professional friendliness             2. acknowledge returning customers             3. ask how to help             """         )         state['conversation_history'].append(f"assistant: {response}")         return state      async def analyze_intent(self, state: state):         """understand user intent"""         response = await self.llm.generate(             prompt=f"""             conversation history: {state['conversation_history']}             task: analyze user intent             output format:             {{                 "intent": "refund/inquiry/complaint/other",                 "confidence": 0.95,                 "details": "specific description"             }}             """         )         state['current_intent'] = json.loads(response)         return state 

用法

# Initialize system graph = CustomerServiceGraph() state_manager = StateManager() error_handler = ErrorHandler()  async def handle_customer_query(user_id: str, message: str):     # Load or create state     state = state_manager.load_state(user_id) or {         "conversation_history": [],         "current_intent": None,         "user_info": {},         "resolved": False     }      # Add user message     state["conversation_history"].append(f"User: {message}")      # Execute state machine flow     try:         result = await graph.run(state)         # Save state         state_manager.save_state(user_id, result)         return result["conversation_history"][-1]     except Exception as e:         return await error_handler.with_retry(             graph.run,             state         ) 

最佳实践

  1. 陈述设计原则

    • 保持状态简单明了
    • 仅存储必要的信息
    • 考虑序列化要求
  2. 转换逻辑优化

    • 使用条件转换
    • 避免无限循环
    • 设置最大步数限制
  3. 错误处理策略

    • 实施优雅降级
    • 记录详细信息
    • 提供回滚机制
  4. 性能优化

    • 使用异步操作
    • 实现状态缓存
    • 控制状态大小

常见陷阱和解决方案

  1. 状态爆炸

    • 问题:状态太多导致维护困难
    • 解决方案:合并相似的状态,使用状态组合而不是创建新的
  2. 死锁情况

    • 问题:循环状态转换导致任务挂起
    • 解决方案:添加超时机制和强制退出条件
  3. 状态一致性

    • 问题:分布式环境中状态不一致
    • 解决方案:使用分布式锁和事务机制

概括

langgraph 状态机为管理复杂的 ai agent 任务流提供了强大的解决方案:

  • 清晰的任务流程管理
  • 可靠的状态持久性
  • 全面的错误处理
  • 灵活的扩展性

相关阅读